
Towards Efficient and Explainable Distracted Driver Detection

Thanh Tran1 , Dung D. Le1 ,
1College of Engineering and Computer Science, VinUniversity

{21thanh.tq, dung.ld}@vinuni.edu.vn

Abstract
Distracted driver detection systems help keep peo-
ple focused on the road. Previous studies on
this topic utilized convolutional neural networks
(CNNs) and recurrent neural networks (RNNs)
while recent approaches use attention mechanism
and vision transformer to achieve state-of-the-art
(SOTA) results. This paper shows that, by care-
fully tuning the parameters, training a ResNet50 in
8 minutes can yield comparable performance with
SOTA for detecting driver distracted behaviors.

1 Introduction
Driver-assist technologies have become increasingly popular
recently. These technologies make driving more pleasant, but
they can contribute to distracted driving, one of the prime fac-
tor of traffic accidents. It is suggested in [McFarland, 2022]
that autopilot systems need to make sure the driver’s eyes
are on the road and their hands are ready to grab the wheels
at any time. As a result, companies are investing in driver-
monitoring technologies to comply with the regulations.

In literature, deep learning and computer vision techniques
were used in state-of-the-art classification models to accu-
rately identify drivers’ distractions. Recent research focused
on developing specialized neural networks to better capture
the posture of drivers. In this study, we opted for the oppo-
site direction and investigated the performance of a classic
architecture, namely ResNet [He et al., 2015]. I will show
that a modified ResNet with proper training procedure can be
on-par with SOTA techniques such as vision transformer in
detecting distracted drivers.

The decision to investigate ResNet thoroughly was inspired
by [Bello et al., 2021], in which the authors demonstrated that
using better training procedure, ResNet can achieve similar
accuracy as EfficientNet [Tan and Le, 2020], while being 1.7-
2.7x faster.

In general, the inputs are images of drivers; a ResNet
model then classifies whether the drivers are driving safely.

2 Dataset and Features
The dataset used in this study is the American University in
Cairo (AUC) - Distracted Driver Dataset v2 [Abouelnaga et

al., 2018; Eraqi et al., 2019]. The second version contains
more images with more drivers, more precise labeling, and
better sampling per class. Most importantly, training and test-
ing are split based on drivers. Consequently, the performance
on the second version is usually worse than on the first ver-
sion because it requires better generalization.

Distracted Driver v2 consists of 44 drivers, mostly from
Egypt. There are a total of 14,478 frames distributed over
10 classes: Safe Driving (2,986), Phone Right (1,256), Phone
Left (1,320), Text Right (1,718), Text Left (1,124), Adjust-
ing Radio (1,123), Drinking (1,076), Hair or Makeup (1,044),
Reaching Behind (1,034), and Talking to Passenger (1,797).

Out of 44 drivers in our dataset, the training contains 38
drivers (12,555 samples), and the test data contains 6 drivers
(1,923 samples). The sample of each class is shown in Fig. 1.

3 Related work
The first dataset with ten distracted driver actions was re-
leased in 2016 through a Kaggle competition by State-
Farm [Kaggle, 2016], but this dataset is not available for re-
search purposes. In 2017, Abouelnaga et al. [Abouelnaga
et al., 2018] released a new dataset called AUC Distracted
Driver Dataset v1 with the same ten actions as the StateFarm
dataset (and version 2 in 2019 [Eraqi et al., 2019]).

For the rest of this paper, readers can assume that the re-
sults from related papers and this paper are for AUC-DDDv2
unless stated otherwise explicitly.

The authors of AUC-DDDv2 dataset proposed a geneti-
cally weighted ensemble of InceptionV3 to achieve a 95.98%
classification accuracy on v1 and 90% on v2. [Mase et al.,
2020] used InceptionV3 and stacked Bidirectional LSTM to
reach 92.7%. [Koay et al., 2021] combined CNNs predictions
of pose estimation images and original images to achieve
94.28%. To my knowledge, the current state-of-the-art model
for AUC-DDDv2 is a highly complex and specialized neu-
ral network called AG-Net [Bera et al., 2021], obtaining
96.65% classification accuracy. AG-Net uses Gaussian Mix-
ture Model to identified regions that contains the most rele-
vant information and applies attention mechanism on them.

Despite the promising results, all of these works use rela-
tively complex pipelines, leading to slow training and infer-
ence time. This work aims to create an architecture that can
balance between accuracy and inference time.



Figure 1: Ten Classes of Driver Postures. [Abouelnaga et al., 2018]

Figure 2: Samples augmented by RandAugment.

Figure 3: Cosine learning rate decay with linear warmup.

3.1 Transfer learning

Training a model from scratch requires careful search of hy-
perparameters and a sufficiently large dataset. I find out trans-
fer learning consistently yields better performance and takes
less training resources for AUC-DDDv2. The model used in
this study is BiT-R50x1-M [Kolesnikov et al., 2020], which

was trained on the full ImageNet-21k dataset (14.2 million
images and 21k classes). The only architectural change of
BiT-R50x1-M from ResNet50 is the replacement of Batch
Normalization with Group Normalization and Weight Stan-
dardization. In general, BiT-R50x1-M simplifies hyperpa-
rameter tuning.

4 Methods
4.1 Data Augmentation
Researches have shown data augmentation can significantly
improve performance of deep learning models and are critical
to the successes of SOTA models. Because of the small size
of AUC-DDD, data augmentation techniques help the models
generalize and act as a form of regularization. In this study, I
empirically found the effectiveness of RandAugment[Cubuk
et al., 2019]. RandAugment can be represented by Figure 2.
We used two parameters N = 2, M = 9 as suggested in [Cubuk
et al., 2019].

4.2 Gradient-weighted Class Activation
Mapping (Grad-CAM)

In this study, Grad-CAM was used to explain how BiT-
R50x1-M classifies drivers distracted actions. Grad-



Figure 4: Confusion matrix generated by BiT-R50x1

CAM [Selvaraju et al., 2019] makes CNNs models more
transparent by visualizing the regions of input that are ”im-
portant” for predictions from these model. Grad-CAM uses
the class-specific gradient information flowing into the final
convolutional layer of a CNN to produce a coarse localization
map of the important regions in the image.

5 Experiments
5.1 Selection of Hyperparameters
All experiments were conducted on cloud TPUv3 using the
Tensorflow 2 framework. We empirically chose parameters
base on accuracy and loss in validation batch size of 128,
image resolution 512x512. Cosine learning rate decay with
warmup helps stabilize the models in the first few epochs.
Adam optimizer gives great results with just 10 epochs (each
epoch has 100 steps).

5.2 Metrics and Results
In this study, I follow a standard set of metrics. Accuracy is
used to evaluate model performance and models are trained
with the categorical cross-entropy loss.

BiT-R50x1-M takes only 8 minutes to train 10 epochs
and can reach 95.58% accuracy on validation set of AUC-
DDDv2. The previous best performance by a ResNet50 is
87.7% classification accuracy. This result shows how sub-
tle changes in training procedure can dramatically improve
performance and reduce training time. The results on AUC-
DDDv2 valididation set is illustrated in 4.

5.3 Model explainability
GradCam is used to to discover how CNNs models decide.
We manually investigated results from GradCAM and found
that the models successfully learned to focus key features like

eyes, face, phones, position of hands. Some example results
from GradCam is shown in Figure 5.

5.4 Importance of components
In [Bello et al., 2021], the authors suggested that training
and scaling strategies may matter more than architectural
changes. Therefore, in this section, we would verify this
claim by investigating how each component affects the per-
formance. Besides components discussed here, the choice
of components such as the Adam optimizer and the Cosine
learning rate decay depends on specific tasks and models. The
goal of this section is to give a general view on effective train-
ing techniques.

Architectures. It is natural to try architectures other
than ResNet given the recent success of vision transform-
ers and EfficientNet. We replaced ResNet50 backbone with
EfficientNetV2-M [Tan and Le, 2021] and ViT-S16 [Dosovit-
skiy et al., 2021] and kept the same training procedure. Over-
all, we found that this training pipeline works well for CNNs
without overfitting to ResNet and that architectural changes
are not too impactful compared to other components.

Another CNNs model, EfficientNet achieved 96.05% ac-
curacy. Even when EfficentNetV2-M is twice as large as
ResNet50, we believe the 0.5% performance boast from
ResNet50 is insignificant because:

• The size of AUC-DDDv2 validation set is too small.

• The average accuracy after training 10 times of Efficient-
Net and ResNet50 is both around 94.5%.

As for ViT-S16, we were only able to achieve 84.14% ac-
curacy. However, it may be true that the chosen parameters
are not suitable for a vision transformer. Vision transform-
ers are especially suitable for the Distracted Driver Project



Figure 5: Superimposed images using heatmap from GradCam.

because they inherently give visual explanation through at-
tention mechanism. Therefore, future work can investigate
how to effectively fine tune ViT on small datasets.

RandAugment. Given the small size of dataset, data aug-
mentation techniques are central to the training procedure.
To test the effectiveness of RandAugment, we trained BiT-
R50x1 with different data augmentations strategies:

• No augmentations at all: Performance varies greatly
from 86.69% to 94.38%.

• A simple color distortion of randomizing images bright-
ness, hue, saturation, contrast: Performance varies from
89.86% to 94.18%.

• RandAugment: Performance varies from 92.67% to
95.58%.

Training time using RandAugment is even 30% less than
that using simple augmentation pipeline. That is because
RandAugment actually use less operations (N = 2), while pro-
viding more variations.

RandAugment acts as a regularizes for overfitting prob-
lems. With no augmentations, the train set accuracy reaches
99% after only 2 epochs, while validation set accuracy is less
than 80%. With RandAugment, the gap between two sets is
smaller as the train set accuracy reaches 99% after approxi-
mately 8 epochs.

We also tested EfficientNetV2-M without data augmenta-
tion, and the accuracy achieved was only 87.89%. This is
understandable, because RandAugment was identified in pre-
vious studies as a key component of EfficientNet.

These experiments imply that proper data augmentation
can improve the performance and robustness of models.

Image size. The size of images used in this study
is 512x512, which is relatively large in computer vision.
Most of related works on distraction detection, including
SOTA [Bera et al., 2021], used an image size of 224x224.

When using image input size of 224x224, BiT-M50x1 and
EfficientNet classification accuracy dropped by 3% and 2%
respectively. We believe there are two primary reasons:

• AUC-DDDv2 dataset demands models to look at small
but important regions such as eyes, face, hands, steering
wheel. However, CNNs models used in this study were
pretrained on Imagenet, in which information is sparsely
concentrated all over the image. This difference makes
transfer learning from Imagenet difficult.

• CNNs are not good at capturing information from small
and fine-grained regions due to the nature of convolu-
tional layers.

As for ViT, we found that the changes in image size do not
affect performance. ViT is designed to mitigate the aforemen-
tioned drawback of CNNs. Through the attention mechanism,
ViT can focus solely on important and fine-grained regions of
images.

6 Future Work
This study suggests that researchers could use simple CNNs
such as ResNet50 and a proper training procedure as baseline
before trying more complicated architectures. In this study,
we also give a relatively good pipeline for training CNNs fu-
ture extensions.

For future work, vision transformers can be investigated
more thoroughly. ViT not only achieves state-of-the-art vi-
sion tasks, but also inherently gives visual explanation, mak-
ing ViT ideal for this Distracted Driver Project. However,
training vision transformer requires careful parameter search
and a large dataset. If we can successfully transfer learning
ViT to AUC-DDDv2, that training pipelines can be applied to
other small datasets.
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